Plant production capacity and nutrient mass balance in the PAFF Box, an urban aquaponics module: Preliminary findings
(And its place in human geography research.)

James Gott
Geography and Environment
University of Southampton, UK

Prof. Haïssam Jijakli
Boris Delaide
Gembloux Agro Bio Tech
University of Liège, Belgium
Contents

1. Introduction to the PAFF Box
 STSM - Methods
 - Results

2. Human Geography
 - My own research
The PAFF Box

System details:
1. Fish tanks: 2 x 0.380 m³
2. Sieve gravity filter
3. Biofilter: SHARK BEAD microbead filter
4. Deep Water Growbeds:
 - 2 x 0.275 m³; 65 plants per bed
 - 2 x 0.345 m³; 83 plants per bed (31 pt/m²)
5. Occupies 71.21 m³
6. Total water volume of 2.673 m³

System temperature aim: 25°C

Fish:
Nile Tilapia (*Oreochromis niloticus*)

Plants:
Basil (*Ocimum basilicum* var. ‘Grand Vert’)
Lettuce (*Lactuca sativa* var. ‘GBP’)
STSM: aims and objectives

Describe:
1) Plant and fish production capacity
2) Water and energy consumption over one season production
3) Analyse all macro- and micronutrient budgets

Additional aims:
4) Experience running aquaponic systems
5) Ethnographic data collection
Methods:

<table>
<thead>
<tr>
<th></th>
<th>daily</th>
<th>2x week</th>
<th>1x week</th>
<th>1 x per 2 weeks</th>
<th>1 x per cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>TAN</td>
<td></td>
<td>PO4</td>
<td></td>
</tr>
<tr>
<td>Conductivity</td>
<td></td>
<td>NO2</td>
<td></td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>DO</td>
<td></td>
<td>NO3</td>
<td></td>
<td>Alkalinity</td>
<td>Mg, Ca, K, Ca, Mn, Zn, B, Mo, Cl, Na, Fe</td>
</tr>
<tr>
<td>T°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanitary state</td>
<td></td>
<td></td>
<td></td>
<td>Size stem</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass feed</td>
<td></td>
<td></td>
<td></td>
<td>Nutrient content</td>
<td>mass fish</td>
</tr>
<tr>
<td>Fish number</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>input</td>
</tr>
</tbody>
</table>
Cultivation Plan 1.

Seedlings:

Sown into Rockwool
Watered with tap water
Enter PAFF box after 15 days
Cultivation Plan 2
Results

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>Alkalinity</th>
<th>TAN=NH3-N</th>
<th>NO2-N</th>
<th>NO3-N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>6.64</td>
<td>25.00</td>
<td>0.75</td>
<td>0.06</td>
<td>67.55</td>
</tr>
<tr>
<td>SD</td>
<td>0.64</td>
<td>21.02</td>
<td>0.70</td>
<td>0.03</td>
<td>12.57</td>
</tr>
<tr>
<td>Observation (N)</td>
<td>21.00</td>
<td>13.00</td>
<td>13.00</td>
<td>13.00</td>
<td>13.00</td>
</tr>
<tr>
<td>min</td>
<td>5.50</td>
<td>5.00</td>
<td>0.30</td>
<td>0.02</td>
<td>42.60</td>
</tr>
<tr>
<td>max</td>
<td>7.53</td>
<td>80.00</td>
<td>2.25</td>
<td>0.12</td>
<td>88.00</td>
</tr>
</tbody>
</table>

NO3-N concentration and Water added over time
Results

pH and water added over time

DATE

WATER ADDED (L)

WATER ADDED (L)

pH
Fish production

Date
- 1.07.2015
- 22.09.2015
- 29.09.2015

Mass (g)
- 30,539
- 43,035
- 44,834

Total feed (kg): 25.4
Total days: 91
Mortality (%/d): 5
FCR: 3.28
SGR (%/d): 0.47
GR (g/d): 0.90
<table>
<thead>
<tr>
<th>Basil</th>
<th>Observation (N)</th>
<th>32</th>
<th>5</th>
<th>11</th>
<th>5</th>
<th>5</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoot fresh w. (g)</td>
<td>Mean</td>
<td>183.24</td>
<td>16.14</td>
<td>1.55</td>
<td>2.57</td>
<td>0.16</td>
<td>5.68</td>
</tr>
<tr>
<td>Shoot dry w. (g)</td>
<td>SD</td>
<td>81.40</td>
<td>9.06</td>
<td>0.10</td>
<td>1.58</td>
<td>0.03</td>
<td>2.52</td>
</tr>
<tr>
<td>Ratio leave/stem (g)</td>
<td>min</td>
<td>61.93</td>
<td>9.01</td>
<td>1.32</td>
<td>1.06</td>
<td>0.11</td>
<td>1.92</td>
</tr>
<tr>
<td>roots dry weight (g)</td>
<td>max</td>
<td>386.68</td>
<td>27.80</td>
<td>1.66</td>
<td>4.43</td>
<td>0.18</td>
<td>11.99</td>
</tr>
<tr>
<td>Ratio roots/shoot (g) yields (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lettuce</th>
<th>Observation (N)</th>
<th>66</th>
<th>16</th>
<th>N/A</th>
<th>16</th>
<th>16</th>
<th>66</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoot fresh w. (g)</td>
<td>Mean</td>
<td>173.23</td>
<td>9.35</td>
<td>N/A</td>
<td>0.90</td>
<td>0.10</td>
<td>5.37</td>
</tr>
<tr>
<td>Shoot dry w. (g)</td>
<td>SD</td>
<td>81.61</td>
<td>2.34</td>
<td>N/A</td>
<td>0.18</td>
<td>0.02</td>
<td>2.53</td>
</tr>
<tr>
<td>Ratio leave/stem (g)</td>
<td>min</td>
<td>45.84</td>
<td>5.38</td>
<td>N/A</td>
<td>0.66</td>
<td>0.08</td>
<td>1.42</td>
</tr>
<tr>
<td>roots dry weight (g)</td>
<td>max</td>
<td>317.74</td>
<td>13.34</td>
<td>N/A</td>
<td>1.29</td>
<td>0.13</td>
<td>9.85</td>
</tr>
</tbody>
</table>
Marx: ‘members of society appropriate the materials of nature through their labour, in the process transforming the environment and simultaneously their own (human) nature.’
Human Geography and aquaponics?

• Belton and Bush (2014)
47 geographic journals articles take up aquaculture

Key findings
• 1) Uneven focus on export species/supply chains destined for Northern markets.
• 2) ‘Everyday practices’ of aquaculture missing.
• 3) ‘Alternative food markets’ require attention.
Ethnography

- Ethno/graphy : culture/writing
- Participant Observation
- Immersive experience
- Learn by doing and sharing
References

