Biocontrol in aquaponic systems: Toward a better characterization of microbiota properties

Gilles Stouvenakers – PhD student
Promotor: Haïssam Jijakli

Integrated and Urban Plant Pathology Laboratory
1. Plant pathogens in aquaponic systems
Aquaponics → greenhouse conditions
Aquaponics → greenhouse conditions

* Ideal conditions for plant growth
* But also ideal for the development of many diseases
* Compromises have to be made between
 * Optimum conditions for economic productivity
 * Conditions for diseases and pests prevention
Aquaponics
→ hydroponic diseases

* Theoretically less susceptible to soil-borne pathogens

* Zoosporic oomycetes are frequently detected
 * Pythium spp. and Phytophtora spp.

* Fusarium spp., Rhizoctonia spp., Alternaria spp., Sclerotinia spp., powdery mildews, Botrytis spp., etc.
Aquaponics

\[\rightarrow \] hydroponic diseases

* Crown and root rots on basil
Aquaponics

→ hydroponic diseases

* Botrytis cinerea on basil
2. How to manage plant pathogens in aquaponic system?
Pests control in aquaponics

* Plant pathogens
 → Difficult to manage

* No pesticides or biopesticides especially developed for aquaponics
 * Fish health
 * Antagonist agents not adapted to aquaponic conditions

* Inadvisable use of disinfecting agents
 * For fish health
 * For beneficial bacteria
Diseases control in aquaponics

* Resistant varieties
* Preventive measures
* Good agricultural practices
* Greenhouse conditions management

“All pathogens go through a cycle with similar events.”
3. What about biological control?
3 observations

1. Good plant yields with less nutrients compared to hydroponics
 * Biostimulants?

2. Aquaponic systems appears more resistant to diseases that affect standard hydroponics
 * Antagonist agents?
 * Plant elicitation?
 * Sustaining plant growth under biotic and/or abiotic stress?
3. Microbiota in recirculated aquaculture and hydroponic systems are already characterized

→ Not yet in aquaponics!
4. My PhD thesis
Characterization and biocontrol properties of the microbiota associated with an aquaponic system
1. Characterization of the rhizosphere microbiota
 * Taxonomy
 * Roles and properties
 → 16s rDNA sequencing and shotgun sequencing

2. Quantify the aquaponic plants resistance to diseases

* Underlying questions:
 * Optimal conditions, microbiota evolution, isolation, characterization of an antagonist agent, etc.
Overview of preliminary results:

- Rhizosphere microbiota collecting for DNA extraction
 → Protocol development

Microorganisms concentration in CFU/g of root

<table>
<thead>
<tr>
<th></th>
<th>Washing 1</th>
<th>Washing 2</th>
<th>W2/(W1+W2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Buffer</td>
<td>Buffer</td>
<td></td>
</tr>
<tr>
<td>PO₄ 0.01M - pH7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washing 1</td>
<td>PDA</td>
<td>2.46E+08</td>
<td>17.98 %</td>
</tr>
<tr>
<td></td>
<td>LB</td>
<td>3.40E+08</td>
<td>15.00 %</td>
</tr>
<tr>
<td>Washing 2</td>
<td>PDA</td>
<td>5.40E+07</td>
<td>2.55E+08</td>
</tr>
<tr>
<td></td>
<td>LB</td>
<td>6.00E+07</td>
<td>2.81E+08</td>
</tr>
<tr>
<td>W2/(W1+W2)</td>
<td>PDA</td>
<td>17.98 %</td>
<td>21.84 %</td>
</tr>
<tr>
<td></td>
<td>LB</td>
<td>15.00 %</td>
<td>33.30 %</td>
</tr>
</tbody>
</table>
Thank you for your attention

Gilles Stouvenakers

g.stouvenakers@ulg.ac.be